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Application

We consider two-dimensional flow about a thin profile and
let the values at the surface of the tangential and normal
velocities of a lifting flow (or the normal and tangential ve-
locities of a nonlifting flow) be denoted by u(z) and w(x), re-
spectively. These quantities are approximately related by

¢ uw = 2)7dy = T (an

Applying the quadrature formula (3) to the Cauchy integral
in BEq. (11), we immediately obtain the discretized counterpart

N
3 (@) (@ — Xn) 7t = (X)) m= 1,2 ...

n=1

(12)

If u(z)/W(z) is a polynomial of degree 2N, the values u(z,)
and w(X,,) are exact values of functions u(x) and w(z) re-
lated by Eq. (11).

We illustrate this in Fig. 1 in the case of W(z) = 1, ie.,
in a case where the tangential velocity itself (or the normal
velocity of a nonlifting flow) is a polynomial. The two solid
curves represent the function u(z) = 1 — [(1 4 z)/2] and
the corresponding w-function, which is defined by Eq. (11).
We have chosen N = 4. Therefore, and as the order of the
polynomial considered is equal to the maximum order 2N =
8, the relation (12) is exactly valid. The points [X,,w(X )]
and [2,,u(z,)] must accordingly lie on the solid curves, as is
shown by the circles in the figure.

1t is interesting to compare the present discretized method

with the vortex-lattice method. The latter employs as
integration points (vortex points) and singularity locations
(control points) the  and £ points on N equal subintervals of
the chord. Tt is generally known that these locations yield
surprisingly good results in ordinary cases. In the present
example, by using w values agreeing with the w curve, they
yield w values which have been marked by squares in the
figure.
A similar example but for constant loading has been treated
by James? by the vortex-lattice method. His results deviate,
however, rather much (about 9% for N = 20) from the true
solution. As the u function considered by James is nonzero
at the trailing edge, while the present one vanishes there, we
are tempted to conclude that the vortex-lattice theory is un-
suitable for functions which do not satisfy the Kutta-Jou-
kowsky condition.

In the ordinary case of a lifting flow with constant or poly-
nomial downwash, it is appropriate to choose W(z) = [(1 —
z)/(1 4+ x)'?], and for a slender or a finite wing it is also
relevant to consider the weight functions (1 — 22)~%/2 and
(1 — z»¥%.  Examples for these are not given here, for the
formula (3) is then equivalent with the formula of Brakhage,
and applications of this were shown in Ref. 7. Borja and
Brakhage? achieved such a transformation of the basic integral
relation that the quadrature formula can be applied also for a
finite wing for chord-wise and span-wise integration. In a
similar way, Borja® treated recently even the problem of an
oscillating wing in incompressible flow.

We finally note that, if it is required to evaluate a weighted
integral

L= [ Houwds (13)

as is often the case in aerodynamics, this can be done in a
straightforward way by means of the Gaussian formula

N
L = 3> H@.)au(.) (14)
n=1
This does not require knowledge of a, as the products a,u(x.)
can be solved from Eq. (12). The formula (14) yields exact
values for L if H(z) is a polynomial and if the degree of this
plus the degree of u(zx)/W(z) is less than 2N. Hence, the
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expressions (12) and (14) may be said to represent a general-
ization of the & chord point formula of Pistolesi,? but not only
to any number of vortices and control points but also to load-
ings characterized by an arbitrary weight function W(z).

Conclusions

It has been demonstrated that the Gaussian quadrature
formulas can be applied in the ordinary way even to a Cauchy
integral if the singularity is located at any of certain appro-
priate points. Such points have been defined for integrands
containing an arbitrary weight function and a regular factor.
The formulas are exactly valid for polynomial factors of a
degree equal to twice the number of integration points.
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Wave Propagation in Three-
Layered Plates
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ONSIDER a traction-free, infinitely long plate made of
three layers of different isotropic materials of different
thickness (see Fig. 1). The material constants and geometry
pertinent to layers 1, 2, or 3 will be designated by the super-
scripts (1), (2), or (3), respectively.
The solution of the Navier equations of motion for the ith
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(i = 1,2,3) layer of the plate, may be written as®
U = kf —A:1Pe,PBOZ (kDY) — BiOBOW(kBDx) —
A9 Zy(kaDz) — BeOWolkaWa} cos(kz — wt)
w, @ = —{A;DZo(ka®z) + BOWo(kaWa}k? X
(e;a®2 + 1) sin(kz — wt)
w,® = k{ —A,9Zy(kBPz) — BiOW,(kBDx) —
A0 Vka®DZ,(kaWz) — BeDa®Wy(kaWz)} X
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Ca = —ZokaWry), Cp = —WikaWay)
Cu,Cass = —Cyu,—Cx with superseript (1) changing to 2)
643;6447053,654 = - 031, - 632; - 011; - é12
with (1)—(2) and 2; > ~g,

Ci5,C46,C55,Cos = C1,Co,C11,Cre with (1) — (3) and 2; - —a2
Ces,Ces = Cuy,Che  with (1)=(3) and @, — 5

The elements of the determinant D; are listed below
Cu = —uOk2(e,Va®? — 1) Zo(kBVy)
Cio = —pWk2(e,Va®2 — 1)Wo(kBPzy)
Ciz = —2uWeDi2qWZ (kaWz,)
Cu = —2uVE2aOW,(kaMay)
Cor = 2uea®BWZ(kBVT;), Cor = 2uWE2BOW, (kB DVay)

sin(kz — wt) (1) Cos = —pVk2(e,Ma®2 — 1)Zo(kaMa,)
where Co = —pVk2(e,Va®2 — 1)WolkaWz;)
N @ CuCuli = 1234) = CauCuG = 12,3)
—Lifo? <0,02(F = ,d) with @, substituted for z;
) p(i)wz ) p“)w" ) (= e (e (O — . -
(C{">2 = 'M(i)]ﬁ - ]_l, B2 = WW —1 (3) Cg,,C,;,(’L 576;7:8> CZz; 011(7/ 1;2y3:4) with z; T2
Cy = —eVEBVZ1(kBVx,), Csp = —kBOW (kBVzy)
and
cos(kyx) {sin(k'y,-x) ife® =1
Zalkysz) {eXp(kwx) 1(yi) exp(kyz) if 9 = —1 [ j = (s,d)
Wolha) — [P0 Willy2) = ~cos(hye) if 6P =1 |, _ o @
olk2) = exp(—kvy;2) WeYE) = exp(—kyx) if e, = — 1 ve = B®
v = w/k is the phase velocity; w is the circular frequency;
k is the wave number in the axial direction. #,%, v, are the Css = —kZy(kaWa,;), Cs = —kWolkaWxy)

phase velocity of shear and pressure waves, respectively, in
an infinite isotropic elastic body made of the material of the
tth layer; p,® and u. are the density and the shear modulus
of the tth layer, respectively.

For a plate made of linear isotropic elastic layers the com-
ponents of stress for each layer may be obtained from Eq. (1)
and may be substituted into the boundary and interface
conditions resulting in a set of eighteen homogeneous, linear
algebraic equations in terms of the eighteen constants 4;%,
B;@ (37 =1,2,3). For a nontrivial solution, the determinant
of their coefficients must vanish.

The six constants 4%, B;® (¢ = 1,2,3) appear only in six
of these equations whereas the remaining twelve constants
A;D B;W (7 = 1,2; ¢ = 1,2,3) appear in the twelve re-
maining equations. Consequently, two independent condi-
tions exist for determining nontrivial solutions of the equa-
tions of motion; namely

Dy = |Cij| = 04,5 = 1,2,...,6) (5)
and

Equation (5) is the frequency equation for face-shear (SH)
motion in the plate (u, = u, = 0) whereas Eq. (6) is the fre-
quency equation for coupled longitudinal and flexural (p and
SV) motion (u, = 0). In general if the cross section of the
plate is not symmetric about the # = 0 plane, the face-shear
and the longitudinal-flexural motions do not degenerate into
symmetric and antisymmetric families of modes.
The elements of the determinant D, are given by

Cn = &PuOka®Z(ka®z,), C = uOka®Wi(kaWa,)
Co1,Cor = C1,C1»  with x substituted for z; )
023,(724 = —611,—012

with superseript (1) changed to (2) and z. substituted for z;

051 = “kZo(kﬂ(l)xg), 052 = —kWO(kﬂ(l)xz)
Cos = —eVka®Z(ka®zs), Co = —ka®W,(ka®z;)

051‘,065(@. = 5,6,7,8) = —Csi,—(]ei(i = 1,2,3,4)
with superscript (1) changed to (2)
071‘;081'(7: = 576;7;8) = _Cei)_Cm(i = 1!2’3’4)

with (1) = (2) 22 —> —x,
C7:,Csi(z = 9,10,11,12) = C;;,Csi(i = 1,2,3,4)
with (1) = (3) and 2o > —2a2

Cgi,olo,i(i = 5,6,7,8) = —Cu,—ozi(i = 1,2,3,4)
with (1) — (2) and 2, —> —2»

1]

Coi,Cro.i(i = 9,10,11,12) = Cu;,C1s(i = 1,2,3,4)

with (1) = (3) and zs —> —22

011,5,012,1'(’[ = 9,10,11,12) = C2i,C1i(’&' = 1,2,3,4)
with (1) — (3) and 2 — 3

where

h® h? hL®
T = — (72 +h(1))xz =73 $3=—2—+h(3)

If the materials of Eqs. (1) and (2) or Egs. (2) and (3) are
identical, the frequency Eqs. (5) and (6) reduce to those for
motion in a two-layered plate obtained by Jones.? If all the
layers of the plate are composed of the same material, each
of the Egs. (5) and (6) degenerates into the product of two
determinants. One for symmetric and the other is for anti-
symmetric motion in a homogeneous plate, discussed by
Mindlin® and Meeker and Meitlzer.*
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When the wave number % vanishes, the motion becomes
independent of the axial coordinate. A number of the terms
of the frequency determinants vanish and the frequency equa-
tion for longitudinal-flexural motion D; = 0 may be written
as the product of two determinants. One for thickness shear
modes (4, = u, = 0) and the other for thickness stretch
modes (u, = u, = 0).

If the material and thickness of the layers (1) and
(8) are identical, Eqs. (5) and (6) degenerate into the product
of two determinants

D1 = 2D1‘SD1A = 0 (8)
Dz = 2DZSD2A = 0
where
Cjn ij 0! (211 (/:Ym 0
Dis == Oy Co Caly, DiA = Cn Cn Cu 9)
Cu Cp Cs Ca Cp Cy
Cll 012 013 014 0 0
Cy Cn Cu Cu 0 0
_ 0y Cp Cp Cu Cy Cx
D2S =

041 042 043 044 C45 048
051 052 053 054 055 058
061 CG? 063 064 CGS 068

Cy Cz Ci3 Cu O 0

Cu Cu Cos Cu 0 O

Cy Cp Ci Cu Cy Cy (10)
Cyu Cu Cg Cu Cy Cg

Cu Cn Cu Cu Cx Cxy

Co Ci Cu Cu Coy Cg

DS = Gand D¢ = 1 represent face-shear motion, symmetric
and antisymmetric with respect to the middle plane (@ = 0),
respectively. Whereas, Do = 0 and D4 = 0 represent
longitudinal (symmetric) and flexural (antisymmetric) mo-
tion, respectively. The frequency equations for longitudinal
and flexural motion (DS = 0, Dyt = 0) were obtained by
Y. Y. Yu’$ and were evaluated numerically in the range of
small frequencies and large wavelengths.

Dyt =

Numerical Results

For given geometric and physical parameters the frequency
Eqgs. (5) and (6) constitute transcendental relationships be-

Rayleigh wove in layers (1) &(3)7
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Fig. 2 Frequeney spectrum for a symmetric plate.
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Fig. 3 Frequency spectrum for a nonsymmetric plate.

tween the nondimensionalized wave number { = A®/L =
kR® /7 and the nondimensionalized frequency @ = wh®
[P 2/ [u® e,

A procedure analogous to that described in Ref. 7 has been
programmed on an IBM 7044,/7094 direct coupled system for
numerical evaluation of the frequency equations.

The frequency spectrum for symmetric, three-layered plates
is shown in Fig. 2. In this case, the face-shear modes and the
longitudinal-flexural modes involve uncoupled symmetric or
antisymmetric motion. The first dashed line is the fre-
quency line of the zeroth symmetric face-shear mode. In
plates made of one material, this mode is nondispersive; its
velocity does not vary with the wave length. In three-layered
plates, this mode could be considerably dispersive, as shown
in Fig. 2. The higher face-shear modes are alternately, one
antisymmetric and one symmetrie.

The lowest longitudinal-flexural mode (full-line) is anti-
symmetric (flexural) while the next (full-line) is symmetric
(longitudinal).

The frequency spectrum for nonsymmetric three-layered
plates is shown in Fig. 3. In this case the face-shear modes
and the longitudinal flexural modes do not uncouple into sym-
metric and antisymmetric motion.

In Fig. 2, the physical parameters of the plate are such that
vr® = vp® > 9,® while in Fig. 8, the physical parameters of
the plate are such that the lowest shear-wave velocity is
v and vr® > 0,P (¢ = 1,3). Where vz® is the velocity of
propagation of Rayleigh surface waves in the material of the
ithlayer. Consequently, ashasbeen established analytically?
at large wave numbers, the phase velocity of all longitudinal-
flexural modes approaches asymptotically that of the shear
waves in layer 2. Asapparent in Fig. 2, the frequency lines of
higher modes terrace on the frequency line for Rayleigh
waves in the outer and inner layers, prior to turning to the
a® = Qdirection.
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Linear System Stability via Liapunov’s
Direct Method and the Square Integral

LEE ROSENTHAL*
Hofstra University, Hempstead, N.Y.

Introduction

N application of Liapunov’s second method to auto-
nomous systems desecribed by linear differential equa-
tions of the form

o diyt)
izjoai =0 1)

or by linear difference equations of the form

n
Z%)aiy(m—i—i) =0 (m=...-1,01_..) (2
i=
results in a set of necessary and sufficient conditions for
asymptotic stability in the large.»? These conditions must
be equivalent, respectively, to the Routh stability criterion and
the analogous criterion for discrete time systems, referred to
as the table form eriterion.?—* These equivalences have been
shown by a number of authors.®—11

In this paper, the equivalence is established for both con-
tinuous and discrete time systems in completely parallel de-
velopments. This is accomplished by deriving and proving
the stability criteria directly from appropriate Liapunov
functions obtained in a very natural way.

The derivations begin with the square integral and summa-
tion defined, respectively, as .

v = [y

for continuous time systems and by
V=22 k)
k=m

s«rete time systems. . The convolution integrals from
wansform theory along with residues are used to express the
square integral and summation as quadratic forms in the state
variables

V(x) = $x"BQ.Bx.
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These forms are shown to be Liapunov functions for the sys-
tems.

The Routh criterion and the Routh-type criterion are then
derived and proven to be necessary and sufficient conditions
for the respective quadratic forms to be Liapunov functions
and, therefore, for the systems to be asymptotically stable in
the large.

Continuous Time Systems

A. Derivation of the Liapunov function
Consider the phase variable representation
x() = Ax(®), y(&) = @) 3

of a system governed by the linear, constant coefficient dif-
ferential equation given in Eq. (1).

Assume that the system is asymptotically stable in the
large (ASL). Then, the square integral V defined by

V= [ s

exists and can be evaluated using the convolution integral of
the Laplace transform and residue theory (Ref. 12, Ref. 13,
pp. 10-15) as the quadratic form

V(x) = 1x"BQ.Bx (4)
where (for n odd)
ay Qo R (479
ds dg A 0
B = ,
a, 0 0
M 0 N, Nt |
0 ~N, 0 0
Nz 0 N3 N("+3)/2
Q. = . . (5)
Nasnie 0 Nagnre ... N, |

and the set of factors & ; is the solution of the set of equations

@y Qs ... Ay O ... O N, 0 ]
0 a ... Awee A ... O N, 0
0 Ay ... Qp—3 Ap- 0 N3 0
= . (6)
6 0 ... a a ... a"._l N" 1/a,

It is now shown that V(x) is a Liapunov function for the
system of Eq. (1). The integrand (r)? is non-negative. If
x = 0at time ¢, it can be seen from Eq. (3) that 2; and its first
n — 1 derivatives are zero at time ¢, and consequently that
2; = 0 in the interval [t,»]. Therefore, V = 0. Also, if
V = 0, then z; = 0 in that interval and x = 0. It follows
that V is positive definite and so is V(%) as given in Eq. (4).

The derivative of ¥V with respect to time given by

V = d/dt [ L waZ(T)dT] — —z2() )

is negative semidefinite. Also, from the above, V is not
identically zero anywhere other thanx = 0.

Using the linearity of the system with the above, it is seen
that V(x) is a Liapunov function for the system if it is ASL.
Applying Liapunov’s theorem, it is concluded that the system
is ASL if and only if ¥V (x) is a Liapunov function.



